KM39 absolute biss/Ssi

1. KM39 Absolute encoder (Blind shaft)
1.1 Introduction

KM39 is a blind shaft miniaturzed design, high precision photoelectric absolute encoder, capable of outputting 24Bits of single-turn position information, expandable up to 32Bits, can read up to 24Bits of multi -turn position information. The structure is sturdy and durable.
1.2 Feature:

- External diameter $\varnothing 39 \mathrm{~mm}$, thickness 41 mm , diameter of shaft up to $\varnothing 10 \mathrm{~mm}$.

KM39-S

- Compact and sturdy structure.
- Adopt non-contact photoelectric reflection principle.
- Interface: BiSS_C or SSI.
- Accuracy: ± 80 ".
- Single-turn resolution of 24 Bits is expandable up to maximum 32Bits.
- Support multi-turn data recording without power failure,
the maximum recording is 24 Bits.
1.3 Application:

Servo motor,robot and other industrial automations.
1.4 Connection:

Cable connection (length 1000 mm)
1.5 Protection:

IP65
1.6 Weight: about 130 g
2. Model composition (select parameters)

3. Basic specification

3.1 Resolution

Single-turn(ST)			Multi-turn(MT)		
17Bits	$2^{17}(0 \sim+131071)$	Under 24Bits as standard, expandable up to Max 32Bits	16Bits	2^{16} (65536 turn)	16Bits is the standard product, others can be customized, Max 24Bits
19Bits	$2^{19}(0 \sim+524287)$		16Bits	2^{16} (65536 turn)	
20Bits	$2^{20}(0 \sim+1048575)$		16Bits	2^{16} (65536 turn)	
22Bits	$2^{22}(0 \sim+4194303)$		16Bits	2^{16} (65536 turn)	
24Bits	$2^{24}(0 \sim+16777215)$		16Bits	2^{16} (65536 turn)	

3.2 Parameter

Name	Parameter	Remark
Scanning principle	Photoelectric	
Accuracy	$\pm 80{ }^{\prime \prime}$	
Response speed	Normal action: $6000 \mathrm{~min}^{-1}$	
RMS position signal noise	± 2 @18 Bits/r	
Communication	BiSS_C (Binary)	Pls refer to BiSS_C standards
	SSI (Binary / Gray code)	Pls refer to SSI standards
Communication clock frequency	$\leq 10 \mathrm{MHz}$ (BiSS) or $\leq 5 \mathrm{MHz}$ (SSI)	
Max resolution	24 Bits expandable up to Max 32 Bits	For frame infomation, please refer to P8 \& P9 (data frammes)
Starting time	Typical value: 13 ms	
Absolute position sampling period	≤ 75 ns	
Allowable speed	$\leq 32200 \mathrm{r} / \mathrm{min}$	Restricted by mechanical speed limit
Electrical connection	Cable connection	
Cable	Differential twisted-paired cable	Pls refer to page 6
Cable length	200mm - 10000mm	
Internal single-turn position update rate	15000 kHz	Access rate is limited by communication frequency
Internal multi-turn position update rate	11.5 kHz	
Temperature alarm limit value	$-40^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$	

KM39 ABSOLUTE BISS/SSI

3.3 Mechanical specification

Name	Parameter	Remark
Mechanical Connection	Ring locking with shaft, flexible spring plate fixed connection	
Diameter of shaft	$\varnothing 6 \mathrm{~mm}, ~ \varnothing 8 \mathrm{~mm}, ~ \varnothing 10 \mathrm{~mm}$ (Blind hole, depth 20 mm)	Pls refer to page 5 for dimensions
Shaft material	Stainless steel	
Starting Torque	less than $9.8 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$	
Inertia Moment	less than $6.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	
Shaft load	Radial $30 \mathrm{~N} ;$ Axial 20 N	
Allowed speed	$\leq 6000 \mathrm{rpm}$	Aluminium alloy
Shell material	about 130 g	
Weight		

3.4 Environmental specification

Name	
Environmental temperature	Operaing: $-40 \sim 95^{\circ} \mathrm{C}$
	Storage: $-40 \sim+95^{\circ} \mathrm{C}$
Environmental humidity	Operating and storage:35~85\%RH (Noncondensing)
Vibration	Amplitude $1.52 \mathrm{~mm}, 5 \sim 55 \mathrm{HZ}, 2 \mathrm{~h}$ for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Shock	$980 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$ three times for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Protection	IP 65

4. Electrical specification

4.1 Absolute Maximum Ratings

Symbol	Instructions	Minimum	Maximum	Unit
Vcc	Supply Voltage	-0.3	+6.0	V
$\mathrm{~V}_{\text {BAT }}$	Backup Voltage	-0.3	+6.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-40	+95	$\circ \mathrm{C}$
T_{J}	Junction Temperature	-	150	C

4.2 Recommended electrical specification

Symbol	Instruction	Minimum	Typical value	Maximum	Unit
Vcc	Supply Voltage	4.75	5.0	5.5	V
$I_{\text {DD }}$	Supply Current	-	-	120	mA
$V_{\text {BAT }}$	Backup Voltage (1)	3.0	3.6	4.2	V
$\mathrm{I}_{\text {(BAT) }}$	Backup Current	-	-	35	uA
$\mathrm{f}_{\text {BISS }}{ }^{(2)}$	BISS Communication clock frequency	-	-	10	MHz
	SSI Communication clock frequency	-	-	5.0	MHz
Ta	Operating temperature	-40	-	+95	- C

(1) For the power supply sequence of multi-turn absolute encoders, be sure to power on the system after the battery has been powered up.
(2) PIs refer to BiSS_C and SSI standards.

KM39 ABSOLUTE BISSISSI

5. Basic dimensions

6. Specification for mounting shaft

d
$\varnothing 6_{g 6}(-0.0014)$
$\varnothing 8_{g 6}(-0.0054)$
$\varnothing 10_{g 6}-(-0.0044)$

Mounting screws
Inner hexagon bolt
+flat washer
Specification: M3*6
Material: stainless steel
Quantity: 2

Unit: mm

= Shaft rotation direction of the signal output

KM39 ABSOLUTE BISS/SSI

7. Interface Definition
7.1 Functional definition of wire colors BISS_C / SSI (Binary)

Wire color	Signal				Function	Twisted-paired cable
	BISS_C ST	BISS_C MT	SSI ST	SSI MT		
Red	Up	Up	Up	Up	Power positive	
Black	Un	Un	Un	Un	Power negative	
White	SL-	SL-	DATA-	DATA-	Data signal	
White/BK	SL+	SL+	DATA+	DATA+	Data signal	
Green	MA-	MA-	CLOCK-	CLOCK-	Clock signal	
Green/BK	MA+	MA+	CLOCK+	CLOCK+	Clock signal	
Yellow	N.C.	Vbat	N.C.	Vbat	Backup power supply	
Yellow/BK	N.C.	OV	N.C.	OV	OV	

(1) Cable length 1 M is our factory standard, the longest can be purchased up to 10 M .

Unit: mm
7.2 Electrical Connection

Figure 1: Point-to-point configuration

Note: Both the MA and SLQ lines are differential twisted-paired cable
transmission, compatible with RS422.
The terminal resistor of the MA transmission line has been integrated inside the encoder.
7.3 BiSS_C Communication

Figure 2: BiSS-C Timing

Figure 3: BiSS-C (SSI) Slave Timeout Sequence

Figure 4: BiSS Frame Structure

7.4 SSI Communication

Figure 5: SSI Timing

Figure 6: SSI Frame Structure

The frame is composed of frame structure and data to be transmitted. The sequence of data transmission first is MSB, error bit and alarm bit are low effective, cyclic redundancy check transmitted inverted. The specific data composition is shown in the below table:

Bits No.	Data	Instructions
$[55: 32]$	MT[23:0]	Recording the accumulative number of the encoder running after power on, including directivity
$[31: 8]$	ST[23:0]	Current data of absolute location
$[7]$	nERR	Error output, active low
$[6]$	nWARN	Warning output, active low
$[5: 0]$	CRC[5:0]	Check bit CRC polynomial of 0×43 with a starting value of 0 (output at flip level)

8. Caution

8.1 Caution for operation

- The working temperature shall not exceed the storage temperature.
- The working humidity shall not exceed the storage humidity
- Do not use where the temperature changes dramatically and have fog.
- Do not close to corrosive and flammable gas.
- Keep away from dust,salt and metal powder.
- Keep away from places where you will use water, oil, or medicine.
- Undue vibration and shock will impact the encoder.
8.2 Caution for Installation
- Electrical components should not be subjected to excessive pressure, etc., and electrostatic assessment of the installation environment should be conducted.
- Do not close the cable of the motor power to the encoder.
- The FG wire of the motor and mechanical device should be grounded.
- The shielding wire must be effectively grounded since the shielding is not connected to the encoder.
8.3 Caution for wiring
- Use the encoder under the specified supply voltage. Please note that the supply voltage range may drop due to the wiring length.
- Do not put the encoder wiring and other power lines through the same duct, and do not use them by bundling in parallel.
- Please use twisted pair wires for the signal and power wires of encoder.
- Please do not apply excessive force to the cable of encoder, or it will may be damaged.

