MPB55 absolute biss/ssi

1. MPB55 Multi-turn Absolute encoder (Through shaft)

1.1 Introduction:

MPB55 is a mechanical flexible mounting flate design,
high precision absolute optical encoder, capable of outputting
MPB55-E
24Bits of single-turn position information and reading up
to 24Bits of multi-turn position information.
The product is compact, highly integrated and easy to
install, which can solve the installation problems of
users in limited space.
1.2 Feature:

- External diameter $\varnothing 55 \mathrm{~mm}$,Thickness 16 mm ,

Hollow shaft up to $\varnothing 24 \mathrm{~mm}$;

- Concentric shaft ring locking and unique flexible spring plate mounting structure;
- Adopt non-contact photoelectric reflective principle;
- Interface: BiSS_C or SSI;
- Accuracy: ± 80 "
- Resolution up to 24 Bits (expanded up to 32 Bits);
- Support multi-turn data recording under the condition of no power lost, the maximum recording is 24 Bits.
1.3 Application:

Servo motor, robot and other industrial automations.
1.4 Connection:

Radial socket (8P SM08B-GHS-TB).
Radial cable (length 1000 mm).
1.5 Protection:

IP50
1.6 Weight:
about 150 g
2. Model guide

Model form (filled required parameters in the box as following)

MPB55 absolute biss/ssi

3. Basic specification

3.1 Resolution

Single-turn(ST)			Multi-turn(MT)		
17Bits	$2^{17}(0 \sim+131071)$	Under 24Bits as standard, expandable up to Max 32Bits	16Bits	2^{16} (65536 turn)	16Bits is the standard product, others can be customized, Max 24Bits
19Bits	$2^{19}(0 \sim+524287)$		16Bits	2^{16} (65536 turn)	
20Bits	$2^{20}(0 \sim+1048575)$		16Bits	2^{16} (65536 turn)	
22Bits	$2^{22}(0 \sim+4194303)$		16Bits	2^{16} (65536 turn)	
24Bits	$2^{24}(0 \sim+16777215)$		16Bits	2^{16} (65536 turn)	

3.2 Parameter

Name	Parameter	Remark
Scanning principle	Photoelectric	
Accuracy	$\pm 80{ }^{\prime \prime}$	
Response speed	Normal action: $6000 \mathrm{~min}^{-1}$	
RMS position signal noise	± 2 @18 Bits/r	
Communication	BiSS_C (Binary)	Pls refer to BiSS_C standards
	SSI (Binary / Gray code)	Pls refer to SSI standards
Communication clock frequency	$\leq 10 \mathrm{MHz}$ (BiSS) or $\leq 5 \mathrm{MHz}$ (SSI)	
Max resolution	24 Bits expandable up to Max 32 Bits	For frame infomation, please refer to P9 \& P10 (data frammes)
Starting time	Typical value: 13 ms	
Absolute position sampling period	≤ 75 ns	
Allowable speed	$\leq 32200 \mathrm{r} / \mathrm{min}$	Restricted by mechanical speed limit
Electrical connection	Radial socket \& Radial cable	
Cable	Twisted-paired cable	Pls refer to page 6, 7
Cable length	200mm - 10000mm	
Internal single-turn position update rate	15000 kHz	Access rate is limited by communication frequency
Internal multi-turn position update rate	11.5 kHz	
Temperature alarm limit value	$-20^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$	

MPB55 ABSOLUTE BISSISSI

3.3 Mechanical specification

Name	Parameter	Remark
Mechanical Connection	Ring locking with shaft, flexible spring plate fixed with motor platform	
Diameter of shaft	$\varnothing 14 \mathrm{~mm}, ~ \varnothing 15 \mathrm{~mm}, ~ \varnothing 19 \mathrm{~mm}, ~ \varnothing 20 \mathrm{~mm}, ~ \varnothing 24 \mathrm{~mm}$ (through)	Pls refer to page 5 for dimensions
Shaft material	Stainless steel	
Starting Torque	less than $9.8 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$	
Inertia Moment	less than $6.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	
Shaft load	Radial $20 \mathrm{~N} ;$ Axial 10 N	
Allowed speed	$\leq 4000 \mathrm{rpm}$	Aluminium alloy
Shell material	about 150 g	
Weight		

3.4 Environmental specification

Name	
Environmental temperature	Operating: $-20 \sim 95^{\circ} \mathrm{C}$
	Storage: $-25 \sim+95^{\circ} \mathrm{C}$
Environmental humidity	Operating and storage:35~85\%RH (Noncondensing)
Vibration	Amplitude $1.52 \mathrm{~mm}, 5 \sim 55 \mathrm{HZ}, 2 \mathrm{~h}$ for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Shock	$980 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$ three times for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Protection	IP 50

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Symbol	Instructions	Minimum	Maximum	Unit
Vcc	Supply Voltage	-0.3	+6.0	V
$\mathrm{~V}_{\text {BAT }}$	Backup Voltage	-0.3	+6.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-20	+95	$\circ \mathrm{C}$
T_{J}	Junction Temperature	-	150	C

4.2 Recommended electrical parameter

Symbol	Instruction	Minimum	Typical value	Maximum	Unit
Vcc	Supply Voltage	4.75	5.0	5.5	V
$I_{\text {DD }}$	Supply Current	-	-	120	mA
$V_{\text {BAT }}$	Backup Voltage (1)	3.0	3.6	4.2	V
$\mathrm{I}_{\text {(BAT) }}$	Backup Current	-	-	35	uA
$\mathrm{f}_{\text {BISS }}(2)$	BISS Communication clock frequency	-	-	10	MHz
	SSI Communication clock frequency	-	-	5.0	MHz
Ta	Operating temperature	-20	-	+95	- C

(1) For the power supply sequence of multi-turn absolute encoders, be sure to power on the system after the battery has been powered up.
(2) PIs refer to BiSS_C and SSI standards.

Ver. 3. 0 Page $5 / 12$

5. Basic dimensions

6. Specification for mounting shaft

Mounting screws
Inner hexagon bolt
Specification: M2.5*5
Material: stainless steel
Quantity: 4

D(Motor shaft)
$\varnothing 14{ }_{\mathrm{g} 6}\left(\begin{array}{l}(-0.017\end{array}\right)$
$\varnothing 15{ }_{\mathrm{g} 6}\left(\begin{array}{l}(-0.017\end{array}\right)$
$\varnothing 19_{g 6}\left(\begin{array}{c}-0.0020\end{array}\right)$
$\varnothing 20{ }_{96}\binom{(-0.0020}{-0.020}$
$\varnothing 24{ }_{\mathrm{g6}}{ }^{(-0.0020}{ }_{-0}$

Unit: mm

R = Shaft rotation direction of the signal output
R. $1=$ Radial socket(8P SM08B-GHS-TB)
R. 2 = Radial cable (standard length 1000)

MPB55 ABSOLUTE BISSISSI

7. Interface Definition
7.1 Function and definition of socket pin (Radial socket)

Pin No.	Signal				Function	Twisted-paired cable
	BISS_C ST	BISS_C MT	SSI ST	SSI MT		
Pin 1	Up	Up	Up	Up	Power positive	
Pin 2	Un	Un	Un	Un	Power negative	
Pin 3	SL-	SL-	DATA-	DATA-	Data signal	
Pin 4	SL+	SL+	DATA+	DATA+	Data signal	
Pin 5	MA-	MA-	CLOCK-	CLOCK-	Clock signal	
Pin 6	MA+	MA+	CLOCK+	CLOCK+	Clock signal	
Pin 7	-	Vbat	-	Vbat	Backup power supply	
Pin 8	-	OV	-	OV	OV	

7.2 Socket definition
Socket No: SM08B-GHS-TB Plug+Shielding cable (order additionally)

Unit: mm

MPB55 absolute bississi

7. 3 Function and wire color definition (Radial cable)

Wire Color	Signal				Function	Twisted-paired cable
	BISS_C ST	BISS_C MT	SSI ST	SSI MT		Power positive
Red	Up	Up	Up	Up	Un	Power negative

7.4 Radial cable schematic

Figure 1: Point-to-point configuration
Note: Both the MA and SLQ lines are differential twisted-paired cable transmission, compatible with RS422.
The terminal resistor of the MA transmission line has been integrated inside the encoder.
7. 6 BiSS_C Communication

Figure 2: BiSS-C Timing

Figure 3: BiSS-C (SSI) Slave Timeout Sequence

Figure 4: BiSS Frame Structure
7. 7 SSI Communication

Figure 5: SSI Timing

Figure 6: SSI Frame Structure

The frame is composed of frame structure and data to be transmitted. The sequence of dsta transmission first is MSB, error bit and alarm bit are low effective, cyclic redundancy check transmitted inverted. The specific data composition is shown in the below table:

Bits No.	Data	Instructions
$[55: 32]$	MT[23:0]	Recording the accumulative number of the encoder running after power on, including directivity
$[31: 8]$	ST[23:0]	Current data of absolute location
$[7]$	nERR	Error output, active low
$[6]$	nWARN	Warning output, active low
$[5: 0]$	CRC[5:0]	Check bit CRC polynomial of 0x43 with a starting value of 0 (output at flip level)

8. Installation Steps

First Step
a. Put the encoder(2) directly on the motor shaft and gently push it to the motor.
b. Insert the Allen wrench into the four guide holes of the encoder and screw in and tighten the four M2.5*5 bolts (3) (thread adhesive is required).

Note:
Please refer to page 5 for the fit tolerances of the encoder bushing and the motor shaft.

Second Step

Snap the wrench (A) onto the slot of the encoder bushing by hand, then tighten the nut with the wrench
(B) (recommended tightening force is $13-16 \mathrm{~N} . \mathrm{m}$)

Note:
To avoid loosening of the lock nut during use, which can cause displacement and slippage between the encoder shaft and motor shaft, it is necessary to apply thread adhesive to the threaded surface of the lock nut during installation and then tighten it.

9. Caution

9.1 Caution for operation

- The working temperature shall not exceed the storage temperature.
- The working humidity shall not exceed the storage humidity.
- Do not use where the temperature changes dramatically and have fog.
- Do not close to corrosive and flammable gas.
- Keep away from dust,salt and metal powder.
- Keep away from places where you will use water, oil, or medicine.
- Undue vibration and shock will impact the encoder.
9.2 Caution for Installation
- Electrical components should not be subjected to excessive pressure, etc., and electrostatic assessment of the installation environment should be conducted.
- Do not close the cable of the motor power to the encoder.
- The FG wire of the motor and mechanical device should be grounded.
- The shielding wire must be effectively grounded since the shielding is not connected to the encoder.
9.3 Caution for wiring
- Use the encoder under the specified supply voltage. Please note that the supply voltage range may drop due to the wiring length.
- Do not put the encoder wiring and other power lines through the same duct, and do not use them by bundling in parallel.
- Please use twisted pair wires for the signal and power wires of encoder.
- Please do not apply excessive force to the cable of encoder, or it will may be damaged.

