K130 INCREMENTAL

1. K130 Incremental Optical Encoder (Large diameter through shaft)
1.1 Introduction:

K130 is a large diameter through shaft encoder which can output incremental signals, various electrical interfaces and resolutions available, compact structure, sturdy and durable, widely used in industrial automation fields such as motors, elevators and CNC.
1.2 Feature:

- Encoder external diameter Ø130mm, thickness 39mm, diameter of shaft up to $\varnothing 70 \mathrm{~mm}$;
- Adopt shaft ring locking structure, fixed with flexible spring plate;
- Adopt non-contact photoelectric principle;
- Reverse polarity protection;
- Short circuit protection;
- Multiple electrical interfaces available;
- Resolution per turn up to 144000 PPR .

1.3 Application:

Elevator, motor, packaging machinery, CNC and other automation control fields.
1.4 Connection:

- Radial cable (standard length 1M)
1.5 Protection:

IP50
1.6 Weight:

About 1200g

2. Model Selection Guide

2.1 Model composition(select parameters)

2. 2 Note

1. Z signal is low level active.
2. Z signal is high level active.
(3. None indicated for IP50 and cable length of 1 M , if need to change the length $\mathrm{C}+$ number, the longest is 100 M (expressed by C100). For the specific length of use, pls refer to page 2 of the provision of output circuit.

K130 INCREMENTAL

Ver. 2. 0 Page $2 / 7$

3. Output Method

4. Electrical Parameters

			OC	Voltage	Push-pull	TTL	HTL
Supply voltage			DC5V $\pm 5 \%$;	$\pm 5 \%$		DC5V $\pm 5 \%$	DC8-30V $\pm 5 \%$
Consumption current			100mA Max			120mA Max	
Allowable ripple			$\leq 3 \% \mathrm{rms}$				
Top response frequency			100 KHz			300 KHz	500 KHz
	Output	Input	$\leq 30 \mathrm{~mA}$	Load resistance 2.2K	$\leq 30 \mathrm{~mA}$	$\leq \pm 20 \mathrm{~mA}$	$\leq \pm 50 \mathrm{~mA}$
		Output	-		$\leq 10 \mathrm{~mA}$		
	Output voltage	"H"	-	-	\geq [(Supply voltage)-2.5V]	$\geq 2.5 \mathrm{~V}$	$\geq \mathrm{Vcc}-3 \mathrm{Vdc}$
		"L"	$\leq 0.4 \mathrm{~V}$	$\leq 0.7 \mathrm{~V}$ (less than 20 mA)	$\leq 0.4 \mathrm{~V}(30 \mathrm{~mA})$	$\leq 0.5 \mathrm{~V}$	$\leq 1 \mathrm{~V} \mathrm{VDC}$
	Load voltage		SDC30V	-		-	
Rise \& Fall time			Less than 2us(cable length: 2 m)			Less than 1us(Cable length: 2 m)	
Insulation strength			AC500V 60s				
Insulation resistance			$10 \mathrm{M} \Omega$				
Mark to space ratio			45\% to 55\%				
Reverse polarity protection			\checkmark				
Short-circuit protection			$\checkmark 1$				
Phase shift between A \& B			$90^{\circ} \pm 10^{\circ}$ (frequency in low speed)				
			$90^{\circ} \pm 20^{\circ}$ (frequency in high speed)				
GND			Not connect to encoder				

(1) Short-circuit to another channel or GND permitted for max.30s.

5. Mechanical Specifications

Diameter of shaft	$\varnothing 48 \mathrm{~mm} ; \varnothing 52 \mathrm{~mm} ; \varnothing 55 \mathrm{~mm} ; \varnothing 60 \mathrm{~mm} ; \varnothing 65 \mathrm{~mm} ; \varnothing 70 \mathrm{~mm} ;$ material stainless steel
Starting torque	Less than $300 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$
Inertia moment	Less than $220 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Shaft load	Radial $90 \mathrm{~N} ;$ Axial 60 N
Slew speed	$\leq 3000 \mathrm{rpm}$
Bearing Life	1.5×10^{9} revs at rated load(100000hrs at 2500RPM)
Shell	Die cast aluminum
Weight	about 1200 g

6. Environmental Parameters

Environmental temperature	Operating: $-20 \sim+85^{\circ} \mathrm{C}$ (repeatable winding cable: $-10^{\circ} \mathrm{C}$); Storage: $-25 \sim+90^{\circ} \mathrm{C}$
Environmental humidity	Operating and storage: $35 \sim 85 \% \mathrm{RH}$ (noncondensing)
Vibration(Endurance)	Amplitude $0.75 \mathrm{~mm}, 5 \sim 55 \mathrm{~Hz}, 2 \mathrm{~h}$ for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Shock(Endurance)	$1960 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$ three times for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Protection	IP50

7. Wiring Table

7.1 OC/Voltage/Push-pull

	Supply voltage		Incremental signal		
Wire color	Red	Black	White	Green	Yellow
Function	Up	Un	A	B	Z

7.2 TTL/HTL

	Supply voltage		Incremental signal					
Wire color	Red	Black	White	White/BK	Green	Green/BK	Yellow	Yellow/BK
Function	Up	Un	A+	A-	B+	B-	Z+	Z-
Twisted-paired cable								

Up=Supply voltage.
Shield wire is not connected to the internal circuit of encoder.

Cable connection

K130 INCREMENTAL

Ver.2.0 Page 6/7

8. Basic Dimensions

8.1 Dimensions

8.2 Mounting shaft requirements

Unit: mm

[^0]Ver.2.0 Page $7 / 7$
9. Spring plate options

[^0]:

 ## About vibration

 Vibration act on encoder always cause wrong pulse, so we should pay attention to working place.More pulse per revolution, narrower groovy spacing of grating, more effect to encoder by vibration, when rev is low or stop, vibration act on shaft or main body would cause grating vibrating, so encoder might make wrong pulse.

