SJ50 PARALLEL ABSOLUTE

Ver. 4.0 Page $1 / 7$

1. Absolute Type-Parallel output (Solid Shaft)

1.1 Introduction:

SJ50 is a small economic universal design, compact, sturdy high safety, and commonly used in industrial automations.
1.2 Feature:

- Encoder external diameter $\varnothing 51 \mathrm{~mm}$, thickness 29mm, diameter of shaft up to $\varnothing 8 \mathrm{~mm}$;
- Adopt non-contact photoelectric principle;
- Multiple electrical interfaces available;
- Resolution per turn up to 12Bits(4096)
1.3 Application:

Textile, packaging, motor, elevator, CNC and other automation control fields.
1.4 Connection:

- Radial cable (STD length 1000 mm)
- Radial socket (M23*1 16P)
- Radial cable with plug (STD length 1000 mm)
1.5 Protection:

IP50 \& IP65
1.6 Weight:

About 300 g

SJ50-T

SJ50-C

2. Model Selection Guide

SJ50 Paralle Aassolute

3. Resolution Output Table

SJ50 PARALLEL ABSOLUTE

4. Output Mode

Interface(Parallel)	Output circuit	Output wave form
$\begin{gathered} \text { OC } \\ (\mathrm{NPN}) \end{gathered}$		 View from shaft end,rotate direction is clockwise(CW)
$\begin{gathered} \text { OC } \\ (\mathrm{PNP}) \end{gathered}$		Position: $012234566789101112131415161718192021 \ldots4095$ View from shaft end,rotate direction is clockwise(CW)

SJ50 parallel absolute

5. Electrical Characteristics

			OC(NPN)		OC(PNP)
Supply voltage			DC5V $\pm 5 \%$; DC8V-30V $\pm 5 \%$		
Allowable ripple			$\leq 3 \% \mathrm{rms}$		
Consumption current			100mA Max		
Output code			gray code		
Precision			[360/(resolutionx4)] ${ }^{\text { }}$		
Top response frequency			100kHz Max		
Output capascity	Output current	Input	$\leq 30 \mathrm{~mA}$		
		Output	-		
	Output voltage	"H"	-		
		"L"	$\leq 0.4 \mathrm{~V}$		
	Load voltage		SDC30V		
Rise \& Fall time			Less than 2us (Load resistance $1 \mathrm{~K} \Omega$, cable length: 2 m)		
Output level			Low level available	High level available	
Insulation strength			AC500V 60s		
Insulation resistance			$10 \mathrm{M} \Omega$		
GND			not connect to encoder		

6. Mechanical Characteristics

Shaft	$\varnothing 8 \mathrm{~mm}$ (stainless steel)
Starting torque	Less than $5 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$
Inertia moment	Less than $3 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Shaft load	Radial $50 \mathrm{~N} ;$ Axial 30 N
Slew speed	$\leq 4000 \mathrm{rpm} ; \quad$ IP65 $\leq 3000 \mathrm{rpm}$
Bearing Life	1.5×10^{9} revs at rated load(10000hrs at 2500 RPM)
Shell	Die cast aluminum
Weight	about 300 g

7. Environmental Specifications

Environmental temperature	Operating: $-20 \sim+85^{\circ} \mathrm{C}$ (repeatable winding cable: $-10^{\circ} \mathrm{C}$); storage: $-25 \sim+90^{\circ} \mathrm{C}$
Environmental humidity	Operating and storage: $35 \sim 85 \% \mathrm{RH}$ (noncondensing)
Vibration(endure)	Amplitude $0.75 \mathrm{~mm}, 10 \sim 50 \mathrm{~Hz}, 1 \mathrm{~h}$ for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Shock(endure)	$49 \mathrm{~m} / \mathrm{s}^{2}$, three times for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Protection	IP50; IP65

SJ50 Paralle assolute

8. Wiring table

Socket Pin No. \& Color	Resolution4096	Resolution2048	$\begin{gathered} \text { Resolution1024 } \\ (720) \end{gathered}$	$\begin{array}{\|c} \text { Resolution512 } \\ (360) \end{array}$	$\begin{gathered} \text { Resolution256 } \\ (180) \end{gathered}$	Resolution128	Resolution64	Resolution32
$15=\mathrm{R}=\text { pink } / \text { black }$	bit1 $\left(2^{0}\right)$	Not connect	\square	\square	\square	\square	\square	\square
$\begin{array}{r} 14=\mathrm{P}=\text { gray } \\ \text { /black } \end{array}$	bit2(${ }^{1}$)	bit1 $\left(2^{0}\right)$	Not connect	\square	\square	\square	\square	\square
$\begin{array}{r} 13=\mathrm{O}=\text { blue } \\ \text { /black } \end{array}$	bit3(2^{2})	bit2(${ }^{1}$)	bit1 $\left(2^{0}\right)$	Not connect	\sim	\sim	\square	\square
$\begin{array}{r} \text { 12=N=yellow } \\ \text { /black } \\ \hline \end{array}$	bit4(2^{3})	bit3(2 ${ }^{2}$)	bit2(${ }^{1}$)	bit1(2^{0})	Not connect	\square	-	-
$\begin{array}{r} 11=\mathrm{M}=\text { green } \\ \text { /black } \end{array}$	bit5(2^{4})	bit4(2^{3})	bit3(${ }^{2}$)	bit2(2^{1})	bit1 $\left(2^{0}\right)$	Not connect	\square	\checkmark
$\begin{array}{r} 10=\mathrm{L}=\text { white } \\ \text { /black } \end{array}$	bit6(2^{5})	bit5(2^{4})	bit4(2^{3})	bit3(2^{2})	bit2(2^{1})	bit1 $\left(2^{0}\right)$	Not connect	\sim
9=K=pink	$\operatorname{bit} 7\left(2^{6}\right)$	bit6(2^{5})	bit5(2^{4})	bit4(2^{3})	bit3(2^{2})	bit2(${ }^{1}$)	bit $1\left(2^{0}\right)$	Not connect
8=1=gray	bit8(2 ${ }^{7}$)	$\operatorname{bit} 7\left(2^{6}\right)$	bit6(25)	bit5(24)	bit4(23)	bit3(2 ${ }^{2}$)	bit2(${ }^{1}$)	bit1 $\left(2^{0}\right)$
7=H=blue	$\operatorname{bit} 9\left(2^{8}\right)$	bit8(2 ${ }^{7}$)	$\operatorname{bit} 7\left(2^{6}\right)$	bit6(25)	bit5(24)	bit4(2 ${ }^{3}$)	bit3(2 ${ }^{2}$)	bit2(${ }^{1}$)
6=G=yellow	bit10(29)	$\operatorname{bit} 9\left(2^{8}\right)$	bit8(27)	$\operatorname{bit} 7\left(2^{6}\right)$	bit6(2^{5})	bit5(2^{4})	bit4(23)	bit3(2 ${ }^{2}$)
$5=F=$ green	bit11(2 ${ }^{10}$)	bit10(2^{9})	$\operatorname{bit} 9\left(2^{8}\right)$	bit8(2^{7})	$\operatorname{bit} 7\left(2^{6}\right)$	bit6(2^{5})	bit5(24)	bit4(2^{3})
4=E=white	bit12(2 ${ }^{11}$)	bit11(2 ${ }^{10}$)	bit10(29)	$\operatorname{bit} 9\left(2^{8}\right)$	bit8(2 ${ }^{7}$)	$\operatorname{bit} 7\left(2^{6}\right)$	bit6(25)	bit5(24)
3=D=brown	W (outside control direction: non-contact is CCW; connect to oV is CW)							
2=C=black	OV							
$1=B=$ red	DC5V \& DC8-30V							
$0=A=$ shielding	GND							

Cable connection

Radial socket connection

M23*1 16P
Male-connector pin Assignment

M16F-16K Male-head pin Assignment

SJ50 parallel absolute

Ver. 4. 0 Page $6 / 7$

9. Basic Dimensions

9.1 Dimensions

|R. 1
1

9.2 Assembling requirement

Notice : The radial runout of motor shaft should be less than 0.03 mm , and the angle shoud be less than 1.0°.

Unit: mm

- Shaft rotation direction of the signal output
R. 1 = Radial cable (Standard length 1000 mm)
R. 2 = Radial socket (M23x1 16P Male-connector)
R. 3 = Radial cable with plug (Standard length 1000 mm , plug M16F-16K)

Vibration act on encoder always cause wrong pulse, so we should pay attention to working place.More pulse per revolution, narrower groovy spacing of grating, more effect to encoder by vibration, when rev is low or stop, vibration act on shaft or main body would cause grating vibrating, so encoder might make wrong pulse.

SJ50 Paralle assolute

10. Accessories(Recommended purchase)

10.1 Plug connection

Plug and cable	Brief description	No.	Order No.
	C01=Connection type head A: M23, 16-pin female straight connector; Connection type head B: Bare wire end; Cable length: 1M 15-core with shield,halogen-free PUR	SJ50C01	44400027
	C02=Connection type head A: M23, 16-pin female straight connector; Connection type head B: Bare wire end; Cable length: 2M 15-core with shield,halogen-free PUR	SJ50C02	44400028

10.2 Coupling

10.3 Bracket

